Weighted ℓ1-Minimization for Generalized Non-Uniform Sparse Model
نویسندگان
چکیده
Model-based compressed sensing refers to compressed sensing with extra structure about the underlying sparse signal known a priori. Recent work has demonstrated that both for deterministic and probabilistic models imposed on the signal, this extra information can be successfully exploited to enhance recovery performance. In particular, weighted l1-minimization with suitable choice of weights has been shown to improve performance at least for a simple class of probabilistic models. In this paper, we consider a more general and natural class of probabilistic models where the underlying probabilities associated with the indices of the sparse signal have a continuously varying nature. We prove that when the measurements are obtained using a matrix with i.i.d Gaussian entries, weighted l1-minimization with weights that have a similar continuously varying nature successfully recovers the sparse signal from its measurements with overwhelming probability. It is known that standard l1-minimization with uniform weights can recover sparse signals up to a known sparsity level, or expected sparsity level in case of a probabilistic signal model. With suitable choice of weights which are chosen based on our signal model, we show that weighted l1-minimization can recover signals beyond the sparsity level achievable by standard l1-minimization.
منابع مشابه
Estimation and Selection via Absolute Penalized Convex Minimization And Its Multistage Adaptive Applications
The ℓ1-penalized method, or the Lasso, has emerged as an important tool for the analysis of large data sets. Many important results have been obtained for the Lasso in linear regression which have led to a deeper understanding of high-dimensional statistical problems. In this article, we consider a class of weighted ℓ1-penalized estimators for convex loss functions of a general form, including ...
متن کاملWeighted ℓ1-Minimization for Sparse Recovery under Arbitrary Prior Information
Weighted l1-minimization has been studied as a technique for the reconstruction of a sparse signal from compressively sampled measurements when prior information about the signal, in the form of a support estimate, is available. In this work, we study the recovery conditions and the associated recovery guarantees of weighted l1-minimization when arbitrarily many distinct weights are permitted. ...
متن کاملOptimal incorporation of sparsity information by weighted ℓ1 optimization
Compressed sensing of sparse sources can be improved by incorporating prior knowledge of the source. In this paper we demonstrate a method for optimal selection of weights in weighted l1 norm minimization for a noiseless reconstruction model, and show the improvements in compression that can be achieved.
متن کاملAnalyzing Weighted ℓ1 Minimization for Sparse Recovery with Nonuniform Sparse Models
In this paper we introduce a nonuniform sparsity model and analyze the performance of an optimized weighted `1 minimization over that sparsity model. In particular, we focus on a model where the entries of the unknown vector fall into two sets, with entries of each set having a specific probability of being nonzero. We propose a weighted `1 minimization recovery algorithm and analyze its perfor...
متن کاملWeighted ℓ1 minimization for sparse recovery with prior information
In this paper we study the compressed sensing problem of recovering a sparse signal from a system of underdetermined linear equations when we have prior information about the probability of each entry of the unknown signal being nonzero. In particular, we focus on a model where the entries of the unknown vector fall into two sets, each with a different probability of being nonzero. We propose a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Information Theory
دوره 61 شماره
صفحات -
تاریخ انتشار 2015